
A quick run through of 180 years of Classical Mechanics 
– for better appreciation of Quantum Mechanics  
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For those who followed the course pattern of University Physics I and Classical Mechanics I or equivalents, 
this will largely be a review.  For those haven’t taken Lagrangian and Hamiltonian Mechanics, don’t worry – 
just open up your mind, relax and absorb.   

Lagrangian and Hamiltonian Mechanics 



Hinted at obtaining Equation of Motion by taking 
derivatives of energy  2 

Second Course: Lagrangian and Hamiltonian Mechanics 



Q: Why partial 
derivatives? 

(A new function of the dimension of energy) 
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This is the essence of Lagrangian Mechanics 
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Recipe of Lagrangian Mechanics 

Lagrange (1736 – 1813) wrote the book Mécanique analytique (1787) that 
defined the subject Analytical Mechanics  
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That was a defining moment in physics!  Let’s see why 

Q: Why Lagrangian formulation?  

Good Stuff #1: 
• Energy (scalar) easier to handle from forces (vectors) 

Good Stuff #2:  
• Easy identification of coordinate-momentum pair(s) 

• In QM, such pair becomes conjugated pair of 
operators 

• Systematic way of getting equation of motion 
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• Easy identification of coordinate-momentum pair(s) 

Big idea: For every coordinate, there is an accompanying momentum 

Also called generalized 
momentum 

Define momentum 

How momentum 
evolves in time? 
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Side comment on Quantum Mechanics 

Big idea from Lagrangian Mechanics:  
For every coordinate, there is an accompanying momentum 

Substitute into the Hamiltonian 



Simplest Example 

Harmonic Oscillator: 

Systematic way of getting Equation of motion 
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“Simple” Pendulum: A not-so-simple example 
[Physics is characterized by principles that can be generalized] 

Coordinate is ϴ (doesn’t look like a coordinate in usual sense) 

Key points: Angular momentum and torque appear by themselves, and systematic 
way of getting equation of motion! 
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Good Stuff #3:  
• Easy identification of conserved quantities 

Simplest Example:  

What’s being done?   
• If L does not depend on a coordinate x, then the (generalized) 

momentum px does not change in time (conserved)!    

Deeper thought: 
• Symmetry and Conservation Law  
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Symmetry?  What symmetry? 

• Take something (an object such as a hexagon) 
• Do something (operation) (rotation about the center through some angle) 
• Has it been changed?  If not, there is a symmetry of the object for the operation 

Changed! Rotated by 10 degrees 

Rotated by 60 degrees Not changed!  There is a symmetry! 

But what is the “object” in Mechanics that we want to 
study its symmetry? 
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The “object” is the Lagrangian L 

Think like a physicist!  
• Free particle => no force => V = 0 (or same constant) everywhere  
• Thus, space x is homogeneous (meaning the same everywhere) 
• Fancy way of saying something simple:  

• Make an arbitrary translation in space x -> x + δ (called a 
transformation) 

• Inspect L and see if L is changed or not 
• If L does not change under the transformation (translation here), then 

obviously the same equation of motion follows (physics hasn’t been 
changed) 

• Accompanying this symmetry (L does not change and same eq of 
motion), something is conserved (px here) 
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Bonus: Why bother and why so fancy?  

• Big stuff in 20th century physics!  
 

• Jumping to about 1930 
 
• E.g. Requiring L for an electron not to change under a 

transformation of the phase of the quantum mechanical 
wavefunction (“phase (gauge) transformation”) of the 
electron, the correct formula describing how an electron 
interacts with EM fields appears automatically!  (This is 
QED and it is a gauge field theory (Yang and Mills 1954)).  
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Good Stuff #4:  
• Principle of Least Action (completed by Hamilton) 

A way to interpret the Lagrange equation 

(This is the question) 
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Harmonic oscillator (Configuration Space, displayed horizontally) 

Lagrangian Mechanics 
is about the 
configuration space, 
which is just x (a line 
for 1D problem).  The 
Euler-Lagrange 
equation (equation of 
motion) governs how 
the system evolves in 
configuration space in 
time, thus just x(t).  
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Harmonic oscillator (Configuration Space, displayed vertically) 

Lagrangian mechanics 
is about the 
configuration space, 
which is just x (a line 
for 1D problem).  The 
Euler-Lagrange 
equation (equation of 
motion) gives how the 
system evolves in 
configuration space in 
time, thus just x(t), 
here displayed 
vertically. 
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[Maupertuis (1747), d’Alembert (1743), Euler and Lagrange (1750’s), Hamilton (1834)] 

What is so special about the actual trajectory? 

(The Least Action Principle) 

Why taken so long (90 years)?  Need to wait for the maths (calculus of variation) 18 



• Action for 3 periods of oscillation 
vs the weighting of the error 
function r 

 

• Wrong Motion: 

𝑦 𝑡 = 𝐴 cos (
𝑘

𝑚
 𝑡

+ 𝑟 sin
𝑘

𝑚
𝑡   

• r (the weighting of the error 
function): 
from -1 to 1 

• r = 0 -> correct motion 

 

An illustration: Harmonic oscillator (actions for correct & wrong motions) 

[Meaning of Least Action Principle: If not following the right trajectory, Action will be higher] 

[Animation credit:  LEUNG Chun Hei (MPhil Student, CUHK)] 

Dashed line = actual path 
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Turning Newton’s Law and Euler-Lagrange Equation 
into an extremum principle is profound!  

• Principle of least time in Optics (Fermat 1657) – path of 
light from one point to another is one that takes the 
shortest time 
 

• Mechanics follows suit (around 1750) – actual trajectory 
is one that minimizes the Action (inside action is the 
Lagrangian L) 
 

• Thermodynamics and Statistical Physics – Entropy in a 
closed system is maximized as system approaches 
equilibrium.  At constant pressure, reactions go in a way 
to minimize the Gibbs free energy G(T,p); etc. 
 

• Formulating quantum field theories 
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Key ideas/Summary: Lagrangian Mechanics 

• Getting equation of motion systematically from L 
 

• For every coordinate, there is a momentum 
 

• Easy to explore conservative laws and their relation to 
symmetry in L 
 

• Put mechanics into an extremum principle (Least Action 
Principle) [Feynman formulated QM based on the action in 
1950’s] 
 

• Bridging over to quantum mechanics: Coordinate-
momentum pair(s) become operators in a systematic way 
 

• Bridging over to Hamiltonian Mechanics 21 



Let’s meet Euler and Lagrange 

Portrait by Jakob Emanuel Handmann (1753) 
[Taken from Wikipedia]  

Leonhard Euler (1707 – 1783) 

“The most beautiful equation of mathematics” 

[By Bogdan Giuşcă - Public domain (PD), based on the image, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=112920] 

Graph Theory 

Euler’s equation in hydrodynamics 
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Rigid Body Motions 

https://commons.wikimedia.org/w/index.php?curid=112920
https://commons.wikimedia.org/w/index.php?curid=112920
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Leonhard Euler (1707 – 1783)  
 
Euler is often regarded as the greatest mathematician of all time.  He was born 
1707 in Switzerland (29 years senior than Lagrange).  At age 14, he entered the 
University of Basel for religious studies, but soon he found that he was talented in 
mathematics.  He published many papers in mathematics when he was a student.  
At age 19 (1726), he completed university studies and immediately after that he 
was offered a position at the St. Petersburg Academy of Science in Russia.  In St. 
Petersburg, he was surrounded by many gifted scientists and he worked and 
contributed to every branch of mathematics, pure and applied.  In 1735 (28 years 
old), Euler lost the vision in one eye due to a serous fever, but he remained 
productive.  In Russia, Peter the Great died in 1725 and Catherine the Great would 
not become Empress until 1762. Russia was politically unstable in the 1730’s.  
Euler moved to the Berlin Academy of Science in 1741 at the invitation of 
Frederick the Great (King of Prussia) and worked there for 25 years.  During those 
years, he published close to 400 articles.  During his stay in Berlin, Euler invited 
Lagrange (29 years younger than him) to join him in Berlin in 1755 when Lagrange  
was only 19 years old.   But Lagrange turned down the offer and preferred to work 
in his home town instead.    
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Leonhard Euler 
 
In 1766, Russian had stabilized after Catherine the Great became Empress, 
and Euler went back to St. Petersburg.   A few years later, he lost the vision of 
his another eye, but his mathematical works continued with the help of his 
two sons and assistants.  Euler made many contributions.  In physics, you see 
his Euler angles for rigid body, his equation in hydrodynamics, and in 
mechanics.  He invented the calculus of variations.  In the least action 
principle, his method helped when we varied the path from the actual 
trajectory.  This is what nowadays called functional derivatives.  Euler, 
D’Alembert and Lagrange defined the subject of Analytic Mechanics.  Euler 
also worked on vibrations of strings and membranes and he interpreted light 
as waves.    He died in 1783 in St. Petersburg.  The Russian Academy of 
Sciences continued to publish his completed works for almost 40 more years 
after his death.   



Joseph Louis Lagrange (1736 – 1813) 

(1787) 

25 

He participated in defining 
the SI units at the time of 
the French Revolution  
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Joseph-Louis Lagrange (1736 – 1813) 
 
Lagrange was born 1736 in Turin (now in Italy).  His family kept the French 
spelling of the surname although they had lived in Italy for generations.  
Lagrange wanted to be a lawyer, but his father lost his fortune and could not 
support him to do that.  He studied at the University of Turin and discovered 
a talent in mathematics.  At age 19, Lagrange become Professor of 
Mathematics at the Turin Royal Artillery School.   At that time, he was so good 
that Euler invited him to Berlin to join him.  But Lagrange preferred to work 
alone in his home town.  His early contributions to physics and mathematics 
were about the theories on vibration of strings and propagation of sound.  He 
eventually moved to the Berlin Academy of Science in 1766 to occupy Euler’s 
position, when Euler moved back to St. Petersburg.  Lagrange worked in 
Berlin for 20 years.  When the political climate turned bad in Berlin, he moved 
to the Academie des Sciences (Academy of Science) in Paris in 1787 where he 
published his important books on Analytic Mechanics, which transformed 
Mechanics into a branch of mathematical analysis, and Analytic Functions.   
Later, he taught at Ecole Normale and Ecole Polytechnic in Paris.   
You should have seen the Lagrange multipliers in problems for maximizing a 
function under some constraints.  It is again this technique that has led to the 
Least Action Principle and the Euler-Lagrange Equation.   
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Joseph-Louis Lagrange 
 
1790’s was an exceptional period in France.  It was the end of the Age of 
Enlightenment and the beginning of the French Revolution.   A cause of the 
French Revolution, believe it or not, was the inconsistency in the 
measurement system.  There were great scientists in France at that time – 
Laplace and Legrendre for example.  Lagrange’s personality avoided him to 
get into the political conflicts at that time, and yet he was involved in the 
effort of defining then new Metric System, which is still in use today.    A 
note on the SI units.  The definition of Kg, which Lagrange worked on in 
1790s, may be changing later this year to one that replies on the Planck 
constant.    Somehow quantum physics gets into the new definition of the 
kilogram!  This is a great example about the Nature of Science.    The Eiffel 
Tower in Paris has 72 scientists’ names engraved on it.  Lagrange is one of 
them.  The next time you go to Paris, find Lagrange and Fourier there and 
take a picture.   



Hamiltonian Mechanics 

We saw the law of conservation of energy in 
Newtonian Mechanics   
 
From how L not depending on coordinates, we have 
many conservation laws (often involving momenta).  
 
Question: Where is conservation of energy in 
Lagrangian Mechanics? 
 
Answer: The key points are whether L depends on 
time t explicitly and what energy really is 

Hamilton (1805 – 1865) Lagrange (1736 – 1813) 
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Getting something from nothing:  Let’s do 3 steps of math 

Here enters the Hamiltonian.  
The root of Hamiltonian in QM 
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• H has dimension energy 

• If L does not depend on 
time explicitly, then H is 
conserved (does not 
change in time)!   

• This is a statement of 
conservation of energy 

• Energy conservation is 
related to symmetry of L 
in translation in time 

• But what is energy? 

• Derived (identified) H  

• H is constructed from 
quantities in Lagrangian 
Mechanics 

• Harmonic oscillator 

 

Getting something from nothing:  Big Ideas 

Total energy 
30 



Important Features of Hamiltonian H 

• To get H, we need L (thus identified coordinates), then find 
generalized momenta, then construct H (thus need to learn 
Lagrangian Mechanics first) 
 

• H(x,p) is a function of coordinate-momentum pair(s) 

Why so? (next page)  
Why is it important?  The Hamiltonian (plus operators) is the starting 
point of Quantum Mechanics   
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For students prefer 
practicality, simply take  
H(x,p) = total energy  
            = K.E. + P.E  
and start doing QM 



Two ways of looking at the Same Picture 

Vase or Faces? 

The point is: Student A and Student B are conveying 
the same information, only in different ways!  

This change in viewpoint is called a Legrendre (1752 – 
1833) Transform.  The same idea takes us from the 
internal energy U(S,V) to Helmholtz free energy F(T,V) 
or Gibbs free energy G(T,p) in thermodynamics. 

Why so? 
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Why is it important? 

Jumping to 1925-1926 (Quantum Mechanics) 

Harmonic Oscillator Go Quantum! 

Schrodinger Equation (1926) 
was built on the Hamiltonian 

Schrodinger Equation of a Quantum Harmonic Oscillator that 
gives the allowed energies E and wavefunctions  

Do this for coordinate-
momentum pair 
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Why is it important? 

Go back to Hamilton’s time 

H(x,p) describes a system by its coordinate and momentum as 
it evolves in time 
 
Hamiltonian Mechanics introduces the Phase Space (x,p) (2D 
phase space) for a particle moving in 1D (x-direction)  

Harmonic Oscillator 
Amplitude A = 0.5 
Spring constant k = 1 
Mass m = 2 

Energy = 
1

2
𝑘𝐴2 

Conservation of energy => 
System confined to an 
ellipse in phase space 

[Credit: LEUNG Chun Hei (MPhil student, CUHK)] 34 



Equations governing motion in Phase Space -  The Hamilton’s equations 

Getting something from nothing again! 

Lagrange 
Equation 

Two 1st order differential equations (c.f. Newton’s law which is one 2nd order 
equation) giving how x updates and how p updates – they combine to give the 
equation of motion.  Just another way of doing Mechanics! 35 



Why is it important? 

• Concept of phase space is fundamental in developing 
Statistical Mechanics (Boltzmann and Gibbs, end of 19th 
century)  
 

• Take the phase space with you to thermal physics & 
statistical mechanics courses 
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Further Development: More Classical Mechanics 

Poisson (1781 – 1840) 

In Heisenberg’s quantum mechanics (1925), quantum operators evolve in time following 
an equation almost of the same form, with Bracket replaced by commutator. 
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Hamilton 



Further Development 

(From F = x, G = p) 

Dirac did his version of Quantum Mechanics (1925) starting from here! 
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Key ideas/Summary: Hamiltonian Mechanics 

• Energy conservation is related to symmetry of L in time translation 
 

• Identified H(x,p)  
 

• Phase space and how x and p moves (Hamilton’s equations) 
 

• Led to different formulations of quantum mechanics in 1925-26 
 

• Led to developments in Statistical Mechanics in late 1800’s 
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Let’s meet Hamilton 

William Hamilton (1805 – 1865) 
Hamilton’s principle of least action  

Hamilton’s canonical equations of motion 

Hamilton’s theory of optics has an equation highly similar to the Schrodinger Equation 

Hamilton Mathematics Institute, Trinity College Dublin 40 
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William Hamilton (1805 – 1865) 
 
Hamilton was born in 1905, and lived in Dublin, Ireland, all his life.  He would 
be called a highly gifted person nowadays.  His early talent was in linguistics.  
He was fluent in English at age 3.  At age 5, he translated texts from Latin, 
Greek, and Hebrew.  At age 13, he could read 13 languages.  He then turned his 
focus to mathematics.  At age 16, he worked through Newton’s Principia and 
Laplace’s Mecanique Celeste all by himself.   At 18, he entered Trinity College in 
Dublin and won outstanding awards in both the classics and the sciences.  He 
worked on mathematical optics in his undergraduate years.  He presented his 
results in Theory on Systems of Rays to the Royal Irish Academy in 1824 when 
he was only 19 years old, although the paper in published form was delayed to 
for 4 years and appeared in 1828.  This early work was later regarded as a 
masterpiece as it showed a way that optics and mechanics could be formulated 
in the same way mathematically.  This Hamilton’s optics has an equation that 
looks very much like the Schrodinger equation in quantum mechanics 
developed about a century later.   In fact, Schrodinger referred to Hamilton’s 
work in his QM papers.   
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William Hamilton 
 
Hamilton was appointed Professor of Astronomy at Dublin before his 
graduation at age 22, a position that he held to his death at age 60.  He was 
also appointed the Astronomer Royal of Ireland, and even better he was 
allowed not to carry out the duties and left alone to work on his theories!   In 
1834 (age 29), he published the classic paper “On a general method on 
dynamics”, which is 62 pages long.  He formulated classical mechanics in a 
way that would serve as one of the principal formulations of quantum 
mechanics in the works of Heisenberg and Dirac (some 90 years later).  
Therefore, his work influenced all the founders (Schrodinger, Heisenberg, and 
Dirac) of quantum mechanics.    There are many things under his name -- the 
Hamiltonian, which we use a lot in quantum mechanics, his final version of 
the principle of least action, and the Hamiltonian canonical equations.  Later 
in his life, he worked on turning complex numbers into a subject with solid 
algebraic foundation.  He started a related subject call Quaternions and wrote 
a 800-page book on it, but the subject has not found its place in mathematics 
so far.  He also consumed too much alcohol in his later years.      



Summary: Classical Mechanics goes far beyond its domain! 

43 

Minimal learning outcomes for this discussion 

An appreciation that classical mechanics had led a good 
foundation for physicists around 1900 to pursue quantum 
mechanics 
 
Key ideas (think/talk like a physics student):  Newton’s eq. of 
motion -> Lagrangian + Euler equation also give eq. of motion -> 
Lagrangian enters -> define momentum for each coordinate 
(coordinate – momentum pair) [QM needs them] -> Hamiltonian 
[QM starts with H(x,p)] -> Hamilton’s mechanics deals with phase 
space -> motion in phase space implies Poisson bracket [closely 
related to QM commutator] 
 
[These are ideas to know, not the technical details!]   
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Practically:   
All you need to know is to write down the 
Hamiltonian  
 H(x,p) = KE + PE = T + U  
for a given system,   
and to realize that there is a classical mechanics 
root of the Hamiltonian operator in QM  



Big Picture – Paths to perfection of Mechanics after Newton 

Taken from: K. Simonyi, A Cultural History of Physics (CRC Press 2010) 45 



I hope that you see what you learned in previous 
courses is so profoundly uselessly (you might have 
thought) useful! 
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